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NONLINEAR FEEDBACK SOLUTION FOR MINIMUM TIME RENDEZVOUS 

WITH CONSTANT THRUST ACCELERATION 

Arthur E. Bryson, Jr. * 
Harvard University and the Boeing Co. 

Abstract 

The instantaneous thrust-direction for a spacecraft to perform a minimum- 

time rendezvous with another (non-maneuvering) spacecraft is determined as a 

function of instantaneous relative velocity and position. The magnitude of the 

thrust acceleration is assumed constant and the acceleration due to external 

forces is neglected . 

This ostensibly six-coordinate problem (three relative position coordinates 

and three relative velocity coordinates) can be reduced to a problem in two 

coordinates, namely V2/2ar and y , where a is the magnitude of the thrust 

acceleration, V is the magnitude of the relative velocity, r is the distance 

between the two spacecraft, and y is the angle between the relative velocity 

vector and the line-of—sight between the two spacecraft. 

Let ß be the angle between the thrust vector and the line-of-sight and let 

T-t be the time-to-rendezvous. ß and for minimum-time rendezvous are 

given, both analytically and graphically, as functions of V2/2ar and y . The 

•> a(T-t) 
analytic solution is in parametric form, namely V2/2ar , y , B * «od y are 

expressed as functions of two parameters. 

The open-loop solution (the bilinear tangent law) has been known for many 

years. The new contributions here are (1) showing that the solution depends on 

only two dimensionless coordinates and (2) putting the solution in the form of a 

feedback law depending on these two coordinates. 

Natural quantities to measure during a rendezvous maneuver are r , r , and 

* 
Professor, Division of Engineering and Applied Physics, and Consultant, 

respectively. 
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ü where ó is the rate of rotation of the line-of-aight relative to a fixed 

reference axis. The two dimensionless coordinates, in terms of these measured 

quantities, are: 

V2 . (r)2 + (r¿)2 
2ar 2ar 

tany 
ro 

(-r) 

For comparison, the minimum-time rendezvous maneuver using three constant- 

thrust-direction periods is presented. The time-to-rendezvous is found to be very 

close to that of the continuously variable thrust direction solution. 

Introduction 

The rendezvous maneuver consists of bringing the relative position and relative 

velocity of one spacecraft with respect to another to zero simultaneously. It is a 

difficult maneuver and feedback control will almost certainly be required to do it 

properly. In this paper we consider feedback control of rendezvous for the case 

where the target spacecraft is not maneuvering and the pursuing spacecraft has a 

thrust acceleration of constant magnitude, a , but controllable direction. External 

forces are neglected, or equivalently the external forces per unit mass (such as 

gravity) are assumed to be constant in magnitude and direction during the maneuver: 

this latter assumption is reasonably good for nearly-circular satellite orbits if 

the maneuver time is short enough that the angular distance traveled around the 

attracting center is smaller than 30* to 40*. (Reference 1) 
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Mlnimum Time Rendezvous Using Continuously Variable Thrust Direction 

Take the oriRin in the target, which is assumed to be moving with constant 

velocity with respect to an inertial coordinate system. The rendezvous vehii : 

must then bring its position and velocity to zero in minimum time. The proM/im 

is two-dimensional since the target, the rendezvous vehicle, and the relative 

velocity vector determine a maneuvering plane. The equations of motion for the 

rendezvous vehicle are: 

(1) 

(2) 

(3) 

(4) 

where (u,v) 

magnitude of 

• 

u ■ a cose ; 

V « -a sine ; 

X - u ; 

• 

y - V ; 

are velocity components, (x,y) are position components, and the 

the thrust acceleration, a , is assumed constant (see Sketch 1). 

The Hamiltonian of the 1« 

H - A a cose - A a sine ♦ A u ♦ A v , 
u V X y ’ 

so the Euler-Lagrange aquations are 



(8) 

(9) 

(10) 
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X - 0 , 
X 

A - 0 , 
y 

0 ■ a ( A sin0 + A cos8) 
u V 

Equations (6)-(9) are easily integrated to yield 

(ID 

(12) 

(13) 

(14) 

+ UT-t) , 
f 

A - A + A (T-t) , 
V V- y ’ 

A - constant , 
X ’ 

Ay ■ constant , 

where t - time , T - final time , and A , A are final (constant) values of 
f f 

Xu and Xv * Cabining these with (10) we obtain the "bilinear tangent law" 

(13) -tan0 “ 

A + A (T-t) 
vf y' 

Ã + A (T-t) * 
f 

This latter relation may be put into the form of a "linear tangent law" as follows 

(16) tan(0-a) ■ tan(0f-a) + m(T-t) 

where 0f - final value of 0 and 

(17) 

(18) 

(19) 

tana * 
A ’ 
y 

A2 + A2 
_5_ï_ 
A A - A A ’ 
X V y 

A A + A A 
xu, y V. 

t.n<«f-a) . x ( . 
X Vf y uf 

Differentiating (16) with respect to time yields 

(20) 
• - 
0 ■ -m coe2(0-a) 
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Using 6 as the independent variable instead of t , we combine (1) and (2) 

with (20): 

(21) 

(22) 

du a COS0 £ co8(8-a)co8a - gin(8-a)8lna 

m cos2(8-a) m co82(8-a) 

dv a sin8 _ a 8in(e-a)co8a ♦ co8(8-a)sina 

m cos2(8-a) m cos2(8-a) 

These relations are readily Integrated, using u(6f) 1 

(23) cosa,-sino sinh *(tan(8-a))-sinh * 

- v(8f) - 0 : 

(tan(8f-a)) 

a 

m 

(24) -V slna, cosa sec(8,-a)-sec (8-a) 
I 

Again, using 8 as independent variable, we combine (3) and (4) with (20) and 

(23)-(24), and integrate, using x(0^) - y(8^) - 0 : 

(25) X 

(26) [y 

cosa,-sino 

a 

sino, cosa 

sec(8-a)-sec(0£-a)-tan(8-a)[sinh ^(tan(8-a))-sinh *(tan(8j-a) 

■|{sec(8j-a) [tan(8f-a an(8-a)]+tan(8-a)[8ec(e-a)-8ec(6f-a)] 

+sinh (tan(8-a)—sinh ^(tan(8j-a)) ) 

Equations (23)-(26) may be regarded as four equations in the four unknowns 

m , a , 8 , and 8f when u , v , x , y , and a are given. We can reduce this 

to two equations in the two unknowns, 8—a , 8^-0 by Introducing polar cootdiaat«* 

as follows (see Sketch 1): 

(27) 

(28) 

(29) 

(30) 

tano * 
x ’ 

r - <**+t2>1/2 , 

• 

ro 
iY - —7" » 

(-r) 

V - (u2+v2). 

Differentiating (27) and (28) with respect to tlae gives 
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(31) ra 
• XV - vu 
nr ■ —  J— 

(32) 
• XU + w 
X - -. 

r 

Substituting (31)-(32) Into (29)-(30) gives 

(33) 
uy - vx 

tany ■ - , 
ux + vy 

(34) yL 
2ar 

u* + v‘ 

2a(x¿+yz) 

Let us write (23)-(26) in the form 

-u 

2^1/2 * 

(35) 

-V 

(36) 

cosa.-sina 

sino cosa 

cosa,-sina 

sina, cosa 

fu(8-»,ef-a) 

.fv(9-a,6f-a) 

fx(0-a,0£-a) 

f (e-a,0f-a) 

Using (35)-(36), we can write (16), (27), (33), and (34) in terms of f , f , 
X y 

f , f : u V 

(37) 
«(T-t) t«n(8f-q) - tan(fl-tt) 

V " /- 
Vf2 + f2 » u V 

(38) 
r 

0-0 - o-a-(O-a) - tan” (7*) - (0-a) 

(39) Y ■ tan 
. f f - f f 

-1 VU XV 

f f + f f 
X u y v 

(40) 
V2 _ fu ^ fv 

UX 2(fJ+f2)1/2 

Note 
V2 

that y and ~2mr determine 0-a , 0^-a through (39) and (40), and 0-a , 
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V° I- a(I.t)/v and 6 through (37) Md (38) nms the optiBuii 

thrust direction «gle „ith respect to the line-of-.ight. 8 , is given ., . functlon 

of Y and V*/2.r : this 1. the „«.back ia„ for »inlnnn, ti», rendeavous. Also, 

the dimensionless time-to-rendezvous a 
’ V * 8^v®n as a function of v and 

V2/2ar . 

Figure 1 shovs aeveral »in^-ti», p.th. on a vf/2.r va. y plot .nd .Uo 

Shows contours of constant thrust-direction angle, ß . 

Figure 2 shows the same minimum-time paths as Flour- i ^ i 
me pacns as Figure 1 and also shows contours 

of constant dimensionless time-to-rendezvous 
» y • 

Minlmu» Tine Rendeavous U.inp Three Conatanr 

Using the a«« .„„„ption. ., ln th. prevlou. .ectlon> „ the 

that, at the beginning of the rendeavous naneuver, v - y - 0 f 

amply determine, th. direction of the a,y ao , , .„d v are 

arbitrary, except that „e can always choo.e coordinlt, axe. so thaï y .„d y 

are positive or zero (see Sketch 2). ° o 

For given a , ,o , and Vo , there i. an (,,)^ that produce, .inimm 

ma’teuver tm, to rendeavous. hereefter c.ll«l th. "nlnlmu. fuel p.th. - „ .Uol( 

0nly thrii.t-dlr.ctlon period, then there .,. on!, « diffrent typ.. 
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of minimum-time paths, separated by the minimum fuel path, as shown in Figure 3. 

These correspond to x < (x ) . or x > (x ) . Figures 4 and 5 show the 
o o opt o o opt 

u(t) , v(t) histories for these two types of path, and the thrust direction 

histories 0(t) ; the thrust directions are shown as arrows on Figure 3. 

Note there jLs one switch in ú (at time ty ) and one switch in v (at 

T 
time y ) > an(* the minimum fuel path is the case where tu ■ T (or equivalently 

t^ ■ 0 ). The velocity components are given by 

(41) 

(42) 

u - ' 
-V + (a COS0 )t 

o o 

-V + (a COS0 )(2t -t) 
c o o u 

v « < 
-(a sin0 )t 

o 

-(a sin0o)(T-t) 

0 < t < t 

t < t < T 
u 

0 < t < T 
Á. 

J < t < T 

Integrating these two relations we obtain the position coordinates: 

J 

(43) 

r 
x - V t + (a cos© )-^- 
o o o 2 ; 0 < t < t 

x - V t + (a cos© )(•=-2t t+tz) ; t < t < T 
OO o 2 uu u 

(44) 

y - (a sin0 )■=— 
o o ¿ 

y - (a sin0 ) 
•'o o 4 2 

; 0<t<f 

; y < t < T 

Putting u(T) ■ x(T) ■ y(T) - 0 in (41), (43), (44), we obtain three 

simultaneous equations for the three unknowns, > ®nd T : 

(45) V - a CO80 (2t -T) 
o o u 

(46) 

(47) ,o - 

where (45) was used to eliminate 

_ j2 
a cosO^itf- -x~*) 

OU£ 

T2 
a sin0 

o 4 

V from (43). 
o 
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t 
From (A5), solve for ~ : 

t . V 

(48) " 2*1+ aT 8ec0o^ 

t 
Note that 0 < ^ < 1 implies that 

V 
(49) |cos0 I < — 

Let Xo " roC08Yo ’ yo " ro8inYo and U8e (48) ln (46) and (47) to obtain: 

tane 
(50) tarry ■ ----- 

o V 
(1+ -?• sec0 )2 - 2 aT o 

(51) 
V2 
_o_ 
2ar 

2sinY 

° (51)2 sin0. 

These latter equations are simultaneous equations for 6 and as functions 
o V 

. o 
of V2/2ar and y . 

o o o 

Figure 6 shows contours of constant ß - 0 + y on a V2/2ar vs. y plot. 
o o o o o o 

Note that the locus of initial conditions for minimum fuel, x ■ (x ) 
’ o o opt ’ 

corresponds to a discontinuity in the contours and to equality in (49). 

aT 
on a i ,_ 

o o o 
Figure 7 shows contours of const ■ — on a V2/2ar vs. y plot. 

V o o o 

Comparison of Exact and Approximate Solutions 

Comparing Figure 2 with Figure 7, it is apparent that minimum time ualng 

three constant thrust-direction periods is only slightly longer than minimum time 

using continuously variable thrust-direction. This result agrees well with the 

results of Reference 2 which considers the more complicated problem of rendezvous 

and fly-by trajectories of a spacecraft with Mars using two or more constant 

thrust-direction periods. 

Comparison of Figure 1 with Figure 6 is more difficult since Figure 6 shows 

only Initial thrust-direction angle, Bo , whereas Figure 1 shows thrust-direction 

i 
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angle, ß , throughout the rendezvous naneuver. In other words. Figure 1 displays 

a "closed-loop" continuous feedback solution whereas Figure 6 displays an "open-loop" 

program based only on initial conditions. 

Minimum Fuel Solution 

In many cases the minimum-fuel solution (which corresponds to minimum maneuver 

time in this problem; will be of interest and hence the time to befiln thrusting 

must be determined. Figure 3 shows the situation where the pursuer is coasting 

toward the target with constant relative velocity Vq , and, if no thrust were 

used, the pursuer would miss the target by a distance yo . This straight-line 

coasting path shows on Figure 2 as a sine curve since 

(52) 
5 V2 

ÏÎ- . ° , 
2«r nr *lni,o 

O 

and V2/2ayo is constant during coast. Along this sine curve there will be a 

minimum value of ^ . The locus of such points is shown in Figures 1 and 2 and, 

for the three constant thrust-direction period solution, in Figures 6 and 7. These 

minimum-fuel paths correspond with the case - 0 in Equations (11)-(19) ; note 

this gives a "linear tangent law" in Equation (15). 

Conclusion 

A continuous nonlinear feedback law has been obtained for controlling thrust 

direction to produce minimum time rendezvous of a spacecraft with a non-maneuvering 

target. This feedback law depends on only two dimensionless quantities which can 

be determined by measurements of three physical quantities: (1) distance to the 

target, (2) closing velocity along the line-of-sight, and (3) rate of rotation of 

the line-of-sight with respect to an inertial axis in the maneuver plane. 

An approximate solution using only three constant thrust-direction periods was 

presented and shown to Increase the time-to-rendesvous by only a few percent over 

the minimus time. 
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axis. The two dimensionaless coordinates, in terms of these measured 
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2ar 2ar ’ tanV = rtr 

( - r ) 

For comparison, the minimum-time rendezvous maneuver using three 
constant-thrust-direction periods is presented. The time-to-rendezvous 
is found to be very close to that of the continuously variable direction 
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